Definition of Linearly Independence
An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

Example 1. Find the value of h for which the vectors are linearly dependent. Justify each answer.

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
-5 \\
7 \\
8
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
h
\end{array}\right]
$$

ANs: By the definition of linearly dependent. We need to find h such that.

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}=\overrightarrow{0}
$$

has a nontrivial solution.
The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & -5 & 1 & 0 \\
-1 & 7 & 1 & 0 \\
3 & 8 & h & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & -5 & 1 & 0 \\
0 & \not y^{\prime} & 2^{\prime} & 0 \\
0 & 23 & h-3 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{ccc|c}
1 & 0 & 6 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & h-26 & 0
\end{array}\right]
\end{aligned}
$$

Then the equation $x_{1} \vec{v}_{1}+x_{2} \vec{V}_{2}+x_{3} \vec{v}_{3}=\overrightarrow{0}$
has a nontrivial solution if and only if $h-26=0$ (which means x_{3} is a free varible).
Thus $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are linearly dependent if and on'y if $h=26$.

Rok: If the question ask us to find the value of h such that $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are linearly independent. this corresponds to finding h suck that

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}=\overrightarrow{0}
$$

has only trivial solution.
That means we have no free variable in the system. i.e. $h-26 \neq 0$.

Linear Independence of Matrix Columns
Suppose a matrix $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$. The matrix equation $A \mathbf{x}=\mathbf{0}$ can be written as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution of $A \mathbf{x}=\mathbf{0}$. Thus we have the following:

The columns of a matrix A are linearly independent if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Example 2. Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$
A=\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 4
\end{array}\right] \text { ANS: By the above discussion, we know }
$$ $\frac{\hat{a_{1}}}{\frac{1}{a_{2}}} \frac{1}{\hat{a}_{3}} \Leftrightarrow A \vec{x}=\vec{o}$ has only trivial solution.

The augmented matrix for $\overrightarrow{A x}=\overrightarrow{0}$ is

$$
\left[\begin{array}{ccc|c}
-4 & -3 & 0 & 0 \\
0 & -1 & 4 & 0 \\
1 & 0 & 3 & 0 \\
5 & 4 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 3 & 0 \\
0 & -1 & 4 & 0 \\
-4 & -3 & 0 & 0 \\
5 & 4 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 3 & 0 \\
0 & -1 & 4 & 0 \\
0 & -3 & 1 & 0 \\
0 & 4 & -9 & 0
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc|c}
1 & 0 & 3 & 0 \\
0 & -1 & 4 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \lambda^{\prime} & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
10 & 0 & 0 & 0 \\
0 & 11 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Note: The corresponding system has 3 variables.
and 4 equations. The correspond system is

There are no free varibles. So $A \vec{x}=\overrightarrow{0}$ only has trivial solution.
Thus the columns of A are linearly independent.
$\vec{V}_{1} \vec{v}_{2}$ linearly dep $\Leftrightarrow c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}=\overrightarrow{0}$ for some $c_{1} c_{2}$ not all $u_{\text {s }}$.
Say $c_{1} \neq 0$. Then $\vec{v}_{1}=-\frac{c_{2}}{c_{1}} \vec{v}_{2}$

1. A set containing only one vector \mathbf{v} is linearly independent if and only if \mathbf{v} is not the zero vector.
2. A set of two vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.
Sets of Two or More Vectors For ex, $\quad C_{1} \vec{V}_{1}+C_{2} \vec{V}_{2}+C_{3} \vec{V}_{3}=\overrightarrow{0}$ with $c_{1} \neq 0$, then $\vec{V}_{1}=-\frac{C_{2}}{C_{1}} \vec{V}_{2}$
Theorem 7 Characterization of Linearly Dependent Sets
An indexed set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_{1} \neq \mathbf{0}$, then some \mathbf{v}_{j} (with $j>1$) is a linear combination of the preceding vectors, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

Theorem 8. If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.

Theorem 9. If a set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} contains the zero vector, then the set is linearly dependent.
If $\vec{v}_{1}=\overrightarrow{0}$, then $c_{1}=1, c_{2}=c_{3}=0$ is a nonzero sol to $C_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}$
Example 3. Determine by inspection whether the vectors are linearly independent. Justify each answer.

(a) Note $\frac{4}{6}=\frac{-2}{-3}=\frac{6}{9}=\frac{2}{3}$

So $\vec{v}_{1}=\frac{2}{3} \vec{v}_{2}$
They are linearly dependent.
b. $\left[\begin{array}{l}4 \\ 4\end{array}\right],\left[\begin{array}{r}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}8 \\ 1\end{array}\right]$ By Thm 8, the given vectors are linearly dependent. Since there are 4 vectors but on'y 2 entries in each vector.
c. $\left[\begin{array}{r}1 \\ 4 \\ -7\end{array}\right],\left[\begin{array}{r}-2 \\ 5 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ by t only, 2 entries in each ve
linearly dependent since the list contains a zero vector.
$\stackrel{\rightharpoonup}{\vec{a}_{1}}$
\downarrow
\vec{a}_{2}
$\downarrow$$\vec{a}_{3}$
Find a nontrivial solution of $A \mathrm{x}=0$.
ANS: Let $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ be the columns of A, respectively.
Then $A \vec{x}=\overrightarrow{0} \Longleftrightarrow x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}=\overrightarrow{0}$, where $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.
We know $\quad \vec{a}_{3}=\vec{a}_{1}+\vec{a}_{2} \Leftrightarrow \quad \vec{a}_{1}+\vec{a}_{2}-\vec{a}_{3}=\overrightarrow{0}$.
So we can take

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \quad \text { as a nontrivial }
$$

Solution to $A \vec{x}=\overrightarrow{0}$.

The following two questions are left as exercises. I will provide the complete notes for solving them after the lecture.

Exercise 5. Describe the possible echelon forms of the matrix. Use the notation of Example 1 in Section 1.2.
a. A is a 3×3 matrix with linearly independent columns.
b. A is a 4×2 matrix, $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$, and \mathbf{a}_{2} is not a multiple of \mathbf{a}_{1}.

Solution: a) $\left[\begin{array}{ccc}\square & * & * \\ 0 & \square & * \\ 0 & 0 & \square\end{array}\right]$
b) $\left[\begin{array}{ll}\square & * \\ 0 & \square \\ 0 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & * \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$

Exercise 6.

1. How many pivot columns must a 6×4 matrix have if its columns are linearly independent? Why? Solution. All 4 columns of the 6×4 matrix A must be pivot columns. Otherwise, the equation $A \vec{x}=\overrightarrow{0}$ would have a free varible, in which case the columns of A would be linearly dependent.
2. How many pivot columns must a 4×6 matrix have if its columns span \mathbb{R}^{4} ? Why?

Solution. If the colums of a 4×6 matrix $A \operatorname{span} \mathbb{R}^{4}$, then A has a pivot in each row, by Theorem 4.
Since each pivot position is in a different column, A has 4 pivot column.

